TRANSLATIONAL PHYSIOLOGY Suppression subtractive hybridization analysis of low-protein diet- and vitamin D-induced gene expression from rat kidney inner medullary base
نویسندگان
چکیده
Chen G, Yang Y, Fröhlich O, Klein JD, Sands JM. Suppression subtractive hybridization analysis of low-protein dietand vitamin D-induced gene expression from rat kidney inner medullary base. Physiol Genomics 41: 203–211, 2010. First published March 2, 2010; doi:10.1152/physiolgenomics.00129.2009.—Protein restriction and hypercalcemia result in a urinary concentrating defect in rats and humans. Previous tubular perfusion studies show that there is an increased active urea transport activity in the initial inner medullary (IM) collecting duct in low-protein diet (LPD) and vitamin D (Vit D) animal models. To investigate the possible mechanisms that cause the urinary concentrating defect and to clone the new active urea transporter, we employed a modified two-tester suppression subtractive hybridization (ttSSH) approach and examined gene expression induced by LPD and Vit D in kidney IM base. Approximately 600 clones from the subtracted library were randomly selected; 150 clones were further confirmed to be the true positive genes by slot blot hybridization with subtracted probes from LPD and Vit D and sent for DNA sequencing. We identified 10 channel/transporter genes that were upregulated in IM base in LPD and Vit D animal models; 8 were confirmed by real-time PCR. These genes include aquaporin 2 (AQP2), two-pore calcium channel protein 2, brain-specific organic cation transporter, Na and H -coupled glutamine transporter, and solute carrier family 25. Nine genes are totally new, and twelve are uncharacterized hypothetical proteins. Among them, four genes were shown to be new transmembrane proteins as judged by Kyte-Doolittle hydrophobic plot analysis. ttSSH provides a useful method to identify new genes from two conditioned populations.
منابع مشابه
Suppression subtractive hybridization analysis of low-protein diet- and vitamin D-induced gene expression from rat kidney inner medullary base.
Protein restriction and hypercalcemia result in a urinary concentrating defect in rats and humans. Previous tubular perfusion studies show that there is an increased active urea transport activity in the initial inner medullary (IM) collecting duct in low-protein diet (LPD) and vitamin D (Vit D) animal models. To investigate the possible mechanisms that cause the urinary concentrating defect an...
متن کاملNa channel expression and activity in the medullary collecting duct of rat kidney.
The expression and activity of epithelial Na(+) channels (ENaC) in the medullary collecting duct of the rat kidney were examined using a combination of whole cell patch-clamp measurements of amiloride-sensitive currents (I(Na)) in split-open tubules and Western blot analysis of alpha-, beta-, and gamma-ENaC proteins. In the outer medullary collecting duct, amiloride-sensitive currents were unde...
متن کاملInvolvement of multiple kinase pathways in stimulation of gene transcription by hypertonicity.
Osmolality of the mammalian renal medulla is high because of the operation of the urinary concentrating mechanism. To understand molecular events during the early phase of cellular adaptation to hypertonicity, we performed comprehensive searches for genes induced in response to hypertonicity using a cell line (mIMCD3) derived from the inner medullary collecting duct of mouse kidney. PCR-based s...
متن کاملExpression of Metallothionein, P53 and Antioxidant Enzymes by Selenium and Vitamin D3 during Diethyl Nitrosamine-Induced Rat Liver Preneoplasia
Many studies have proved that the dietary micronutrient has an inhibitory effect against experimentally induced rat hepatocarcinogenesis. The present work is an attempt to understand combined effect of selenium (Se) and vitamin D3 (vit D3) on some potential protein expression markers of carcinogenesis, such as metallothionein (MT), P53 and antioxidant levels during ...
متن کاملSubtractive hybridization for differential gene expression in mechanically unloaded rat heart.
The objective of this study was to identify differentially expressed genes in the mechanically unloaded rat heart by suppression subtractive hybridization. In male Wistar-Kyoto rats, mechanical unloading was achieved by infrarenal heterotopic heart transplantation. Differentially expressed genes were investigated systematically by suppression subtractive hybridization. Selected targets were val...
متن کامل